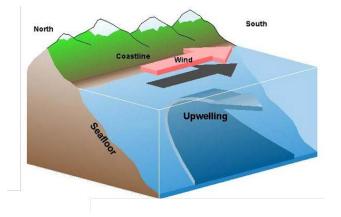


UPPSALA UNIVERSITET


Influence of Coastal Upwelling on the Air-Sea Gas Exchange of CO₂ in a Baltic Sea Basin

Maria Norman, Sindu Raj Parampil, Anna Rutgersson, Erik Sahlée Department of Earth Sciences, Uppsala University, Sweden

UPPSALA UNIVERSITET Background and aim

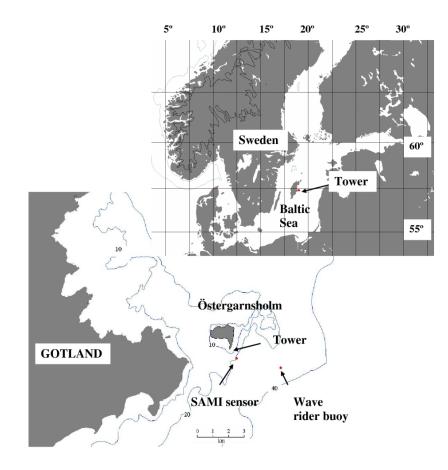
- Upwelling brings water with relatively high concentration of CO₂ to the sea surface.
- An increase of sea surfarce pCO₂ affect the air-sea CO₂ flux.
- Hence, the net CO₂ uptake/release in the region might be altered.

The aim of the present study is to estimate the effect of upwelling on the air-sea exchange of CO₂ off the east coast of Gotland.

• Bulk estimated flux

$$F_{CO_2} = kK_0 \Delta pCO_2$$

 $k = (0.222u + 0.333u^2)\sqrt{660/Sc}$
(Nightingale et al., 2000)


• Eddy-covariance measured flux

$$F_c = \rho_d \overline{w'c'}$$

UPPSALA

Methods and measurements: The Ostergarnsholm site UNIVERSITET

- High frequency turbulent flux measurement (10 m height).
- pCO_{2a} (10 m height)
- pCO_{2w} and SST (4 m depth), 1 km southeast from the tower.
- SST (0.5 m depth), 4 km southeast from the tower (FMI).

UPPSALA UNIVERSITET Methods and measurements: The upwelling events

Four upwelling periods during July and October were selected using in-situ measurement.

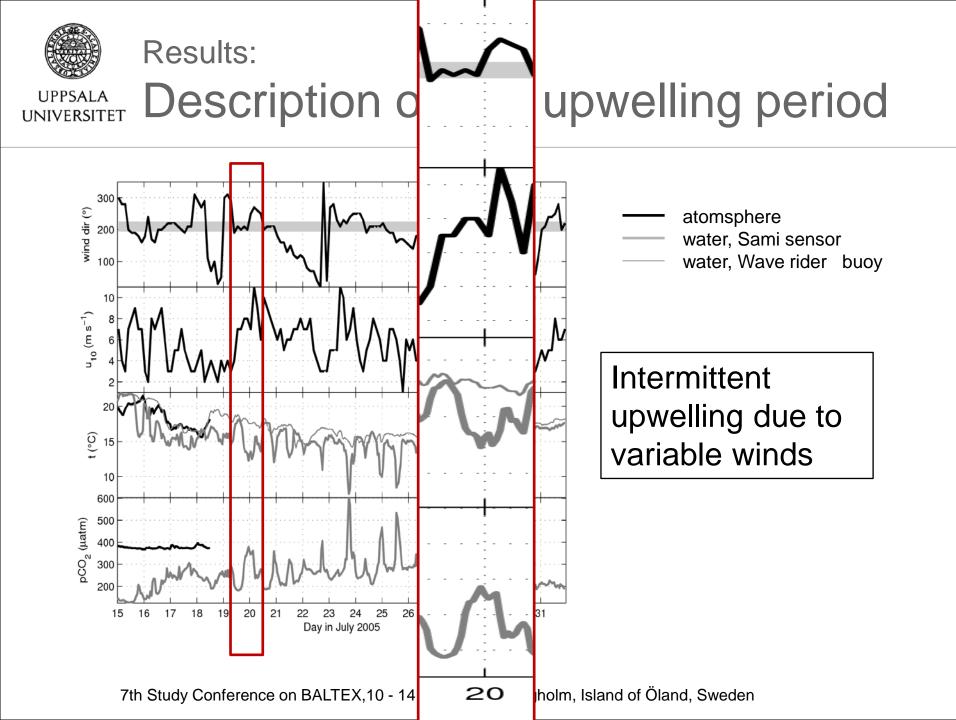
Signatures of upwelling:
Southwesterly winds
Moderate to high wind speed
Rapid drop in SST
Increase in pCO_{2w}

Methods and measurements:

UNIVERSITET

- Satellite SST data
- Daily SST data from the Advanced Very High Resolution Radiometer (AVHRR), onboard the National Oceanic and Atmospheric Administration (NOAA) satellites is used.
- A gap filling technique is applied which provides maximum coverage in space.
- The gap filling technique is based on

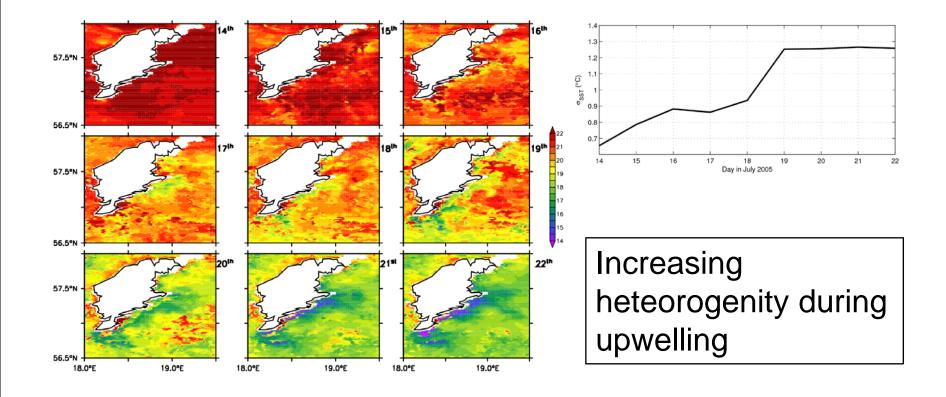
'nearest-neighbor-in-time'.

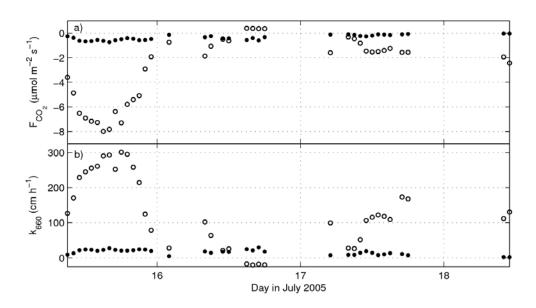

Methods and measurements:

UPPSALA UNIVERSITET Upwelling detection method

- A upwelling detection method inspired by Lehmann et al. (2012).
- The upwelling area is restricted by SST anomaly (SSTA) and the distance from the coast.

In the present study:


- SSTA is defined as the difference between SST and SST₀.
- Upwelling criteria: SSTA>1°C within 50 km from the coast.


UPPSALA UNIVERSITET

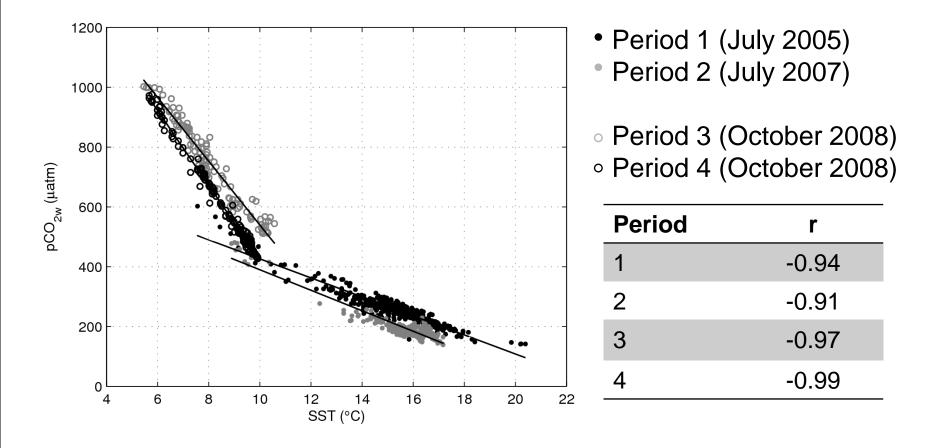
Description of one upwelling period

PSALA Air-sea exchange of CO₂

- Bulk formulation
- Eddy-covariance measurement

- Large differences between estimates with the bulk formula and measurents.
- This is at least partly due to horizontal heteorogenity and sea surfase measurement not in the flux footprint area.

UPPSALA The air-sea CO₂ uptake/release

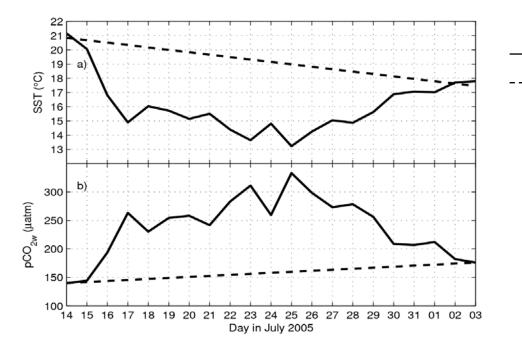

Assumptions:

- SST-pCO_{2w} relation during upwelling.
- Horizontally homogenous wind speed in the upwelling area.
- Estimate SST and pCO_{2w} during non-upwelling conditions.
- SST and pCO_{2w} horizontally homogenous during non-uppwelling conditions.


UPPSALA UNIVERSITET

SST-pCO_{2w} relation

UPPSALA Fluxes and upwelling area



- The upwelling area is estimated using the upwelling detection method.
- The pCO₂ flux is estimated using bulk formulation.

UPPSALA UNIVERSITET

Non-upwelling conditions

— Upwelling ···· Non-upwelling

UPPSALA UNIVERSITET

Satellite derived CO₂ exchange

Period	Non-upwelling (Gg CO ₂)	Upwelling (Gg CO ₂)	Absolute difference (Gg CO ₂)	Absolute relative difference (%)
1	-25.5	-20.5	5.0	19
2	-9.2	-3.8	5.4	59
3	+7.3	+22.7	15.4	211
4	+9.4	+32.8	23.4	250

- Period 1 and 2 the pCO_2 uptake decreases.
- Period 3 and 4 the pCO₂ release increases.

During upwelling, less pCO_2 is taken up by the ocean.

Discussion:

UPPSALA UNIVERSITET How does uppwelling impact the air-sea exchange of pCO_2 in the entire Baltic Sea?

- Norman et al. (2013) estimated the Baltic Sea carbon budget using a 1D-model (Omstedt et al., 2009).
- The model showed that the Baltic Sea is a net sink of 0.22 mol CO₂ yr⁻¹.
- Based on knowledge of the spatial and temporal extention of upwelling in the Baltic Sea, a rough estimate of the impact of upwelling on air-sea exchange in the entire Baltic Sea was performed.
- During upwelling the uptake of CO₂ decreases by up to 25% compared to non-upwelling scenarios.

UPPSALA Conclusions

- The CO₂ net uptake/release in the area surrounding Gotland differs by 19-250% compared to non-upwelling conditions.
- The pCO₂ uptake is smaller during upwelling.
- A rough estimate shows that the total pCO₂ uptake in entire Baltic Sea could decrease by 25% when including upwelling.
- To include upwelling is of major importance when estimating the carbon budget.

UPPSALA UNIVERSITET

Thank you for the attention!